By Topic

Polarimetric Dual-Baseline InSAR Building Height Estimation at L-Band

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sauer, S. ; German Aerosp. Centre (DLR), Microwaves & Radar Inst. (HR), Wessling ; Ferro-Famil, L. ; Reigber, A. ; Pottier, E.

This letter generalizes a multibaseline interferometric synthetic aperture radar (InSAR) signal model to the polarimetric scenario. Based on this formulation, two high-performance spectral analysis techniques are adapted to process multibaseline Pol-InSAR observations. These new methods enhance the height estimation of scatterers by calculating optimal polarization combinations and allow the determination of their physical characteristics. Applying the proposed algorithms to urban environments, the building layover problem is analyzed by means of polarimetric dual-baseline InSAR measurements: the ground and building height are estimated. The techniques are validated using dual-baseline Pol-InSAR data acquired by DLR's Experimental SAR (E-SAR) system over Dresden city.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:6 ,  Issue: 3 )