By Topic

A Space-Time Expansion Discontinuous Galerkin Scheme With Local Time Stepping for the Ideal and Viscous MHD Equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Altmann, C. ; Inst. fur Aerodynamik und Gasdynamik, Univ. Stuttgart, Stuttgart ; Gassner, G. ; Lorcher, F. ; Munz, C.-D.

In this paper, we present the extension of the space-time expansion discontinuous Galerkin to handle ideal and viscous magnetohydrodynamics (MHD) equations. The local time-stepping strategy that this scheme is capable of allows each cell to have its own time step whereas the high order of accuracy in time is retained. This may significantly speed up calculations. The diffusive flux is evaluated through a so-called diffusive generalized Riemann problem. The divergence constraint of the MHD equations is addressed, and a hyperbolic cleaning method is shown that can be enhanced by utilizing the local time-stepping framework. MHD problems such as the Orszag-Tang vortex or the magnetic blast problem are performed to challenge the capabilities of the proposed space-time expansion scheme.

Published in:

Plasma Science, IEEE Transactions on  (Volume:37 ,  Issue: 4 )