By Topic

Architectural Optimizations for Low-Power K -Best MIMO Decoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sudip Mondal ; Cypress Semicond. Corp., San Jose, CA, USA ; Ahmed M. Eltawil ; Khaled N. Salama

Maximum-likelihood (ML) detection for higher order multiple-input-multiple-output (MIMO) systems faces a major challenge in computational complexity. This limits the practicality of these systems from an implementation point of view, particularly for mobile battery-operated devices. In this paper, we propose a modified approach for MIMO detection, which takes advantage of the quadratic-amplitude modulation (QAM) constellation structure to accelerate the detection procedure. This approach achieves low-power operation by extending the minimum number of paths and reducing the number of required computations for each path extension, which results in an order-of-magnitude reduction in computations in comparison with existing algorithms. This paper also describes the very-large-scale integration (VLSI) design of the low-power path metric computation unit. The approach is applied to a 4times4, 64-QAM MIMO detector system. Results show negligible performance degradation compared with conventional algorithms while reducing the complexity by more than 50%.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:58 ,  Issue: 7 )