By Topic

Conjugate Symmetric Sequency-Ordered Complex Hadamard Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aye Aung ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Boon Poh Ng ; Rahardja, S.

A new transform known as conjugate symmetric sequency-ordered complex Hadamard transform (CS-SCHT) is presented in this paper. The transform matrix of this transform possesses sequency ordering and the spectrum obtained by the CS-SCHT is conjugate symmetric. Some of its important properties are discussed and analyzed. Sequency defined in the CS-SCHT is interpreted as compared to frequency in the discrete Fourier transform. The exponential form of the CS-SCHT is derived, and the proof of the dyadic shift invariant property of the CS-SCHT is also given. The fast and efficient algorithm to compute the CS-SCHT is developed using the sparse matrix factorization method and its computational load is examined as compared to that of the SCHT. The applications of the CS-SCHT in spectrum estimation and image compression are discussed. The simulation results reveal that the CS-SCHT is promising to be employed in such applications.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 7 )