By Topic

Lyapunov Theory-Based Multilayered Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
King Hann Lim ; Sch. of Electr. & Electron. Eng., Univ. of Nottingham, Semenyih ; Seng, Kah Phooi ; Ang, Li-Minn ; Siew Wen Chin

This brief presents a Lyapunov theory-based weight adaptation scheme for a multilayered neural network (MLNN) mainly used to classify a multiple-input-multiple-output (MIMO) problem. Initially, the MLNN system is linearized using Taylor series expansion. Then, the weight adaptation scheme is designed based on the Lyapunov stability theory to iteratively update the weight. In the design, the Lyapunov function has to be well selected to construct an energy space with a single global minimum. Hence, the Lyapunov theory-based MLNN acts as a MIMO classifier for face recognition. Analysis and discussion on Lyapunov properties of the proposed classifier are included. The performance of the proposed technique is tested on the Olivetti Research Laboratory database for face classification, and some comparisons with existing conventional techniques are given. Simulation results have revealed that our proposed system achieved better performance.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:56 ,  Issue: 4 )