By Topic

Electrodynamic Tether at Jupiter—II: Fast Moon Tour After Capture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sanmartin, J.R. ; Dept. of Appl. Phys., Univ. Politec. de Madrid, Madrid ; Charro, M. ; Lorenzini, E.C. ; Garrett, H.B.
more authors

An electrodynamic bare-tether mission to Jupiter, following the capture of a spacecraft (SC) into an equatorial highly elliptical orbit with perijove at about 1.3 times the Jovian radius, is discussed. Repeated applications of the propellantless Lorentz drag on a spinning tether, at the perijove vicinity, can progressively lower the apojove at constant perijove, for a tour of Galilean moons. Electrical energy is generated and stored as the SC moves from an orbit at 1 : 1 resonance with a moon, down to resonance with the next moon; switching tether current off, stored power is then used as the SC makes a number of flybys of each moon. Radiation dose is calculated throughout the mission, during capture, flybys and moves between moons. The tour mission is limited by both power needs and accumulated dose. The three-stage apojove lowering down to Ganymede, Io , and Europa resonances would total less than 14 weeks, while 4 Ganymede, 20 Europa, and 16 Io flybys would add up to 18 weeks, with the entire mission taking just over seven months and the accumulated radiation dose keeping under 3 Mrad (Si) at 10-mm Al shield thickness.

Published in:

Plasma Science, IEEE Transactions on  (Volume:37 ,  Issue: 4 )