By Topic

Places Clustering of Full-Length Film Key-Frames Using Latent Aspect Modeling Over SIFT Matches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Heritier, M. ; Res. & Dev. Dept., Comput. Res. Inst. of Montreal, Montreal, QC ; Gagnon, L. ; Foucher, S.

An improved unsupervised classification method to extract and link places features and cluster recurrent physical locations (key-places) within a movie is presented. Our approach finds links between key frames of a common key-place based on the use of a probabilistic latent space model over the possible local matches between the key frames image set. This allows the extraction of significant groups of local matching descriptors that may represent characteristic elements of a key-place. An exhaustive evaluation of our approach was conducted on in-house and public image datasets, as well as on full-length movies. Results revealed that our method is very efficient for near-duplicate object/background detection with weak overlap. Performance measurements on full-length movies indicate a recognition rate of about 75% on the key-places clustering with a false alarm rate (FAR) of approximately 2%.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:19 ,  Issue: 6 )