Cart (Loading....) | Create Account
Close category search window
 

Velocity-Scheduling Control for a Unicycle Mobile Robot: Theory and Experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Buccieri, D. ; Lab. d''Autom., Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland ; Perritaz, D. ; Mullhaupt, P. ; Zhong-Ping Jiang
more authors

Improvement over classical dynamic feedback linearization for a unicycle mobile robots is proposed. Compared to classical extension, the technique uses a higher-dimensional state extension, which allows rejecting a constant disturbance on the robot rotational axis. The proposed dynamic extension acts as a velocity scheduler that specifies, at each time instant, the ideal translational velocity that the robot should have. By using a higher-order extension, both the magnitude and the orientation of the velocity vector can be generated, which introduces robustness in the control scheme. Stability for both asymptotic convergence to a point and trajectory tracking is proven. The theoretical results are illustrated first in simulation, and then experimentally on the autonomous mobile robot Fouzy III.

Published in:

Robotics, IEEE Transactions on  (Volume:25 ,  Issue: 2 )

Date of Publication:

April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.