System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Power vs. delay in gate sizing: conflicting objectives?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sapatnekar, S.S. ; Dept. of Electr. Eng. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; Weitong Chuang

The problem of sizing gates for power-delay tradeoffs is of great interest to designers. In this work, the theoretical basis for gate sizing under delay and power considerations is presented, and results on a practical implementation are presented. The dynamic power as well as the short-circuit power are modeled, using notions of delay and transition density, and the optimization problem is formulated using notions of convex programming. Previous approaches have not modeled the short circuit power, and our experimental results show that the incorporation of this leads to counter-intuitive results where the minimum power circuit is not necessarily the minimum-sized circuit.

Published in:

Computer-Aided Design, 1995. ICCAD-95. Digest of Technical Papers., 1995 IEEE/ACM International Conference on

Date of Conference:

5-9 Nov. 1995