By Topic

A Novel Blood Glucose Regulation Using TSK ^{0} -FCMAC: A Fuzzy CMAC Based on the Zero-Ordered TSK Fuzzy Inference Scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chan Wai Ting ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore ; Chai Quek

This paper presents a novel blood glucose regulation for type I (insulin-dependent) diabetes mellitus patients using biologically inspired TSK0-FCMAC, a fuzzy cerebellar model articulation controller (CMAC) based on the zero-ordered Takagi-Sugeno-Kang (TSK) fuzzy inference scheme. TSK0-FCMAC is capable of performing localized online training with an effective fuzzy inference scheme that could respond swiftly to changing environment such as human's endocrine system. Without prior knowledge of disturbance (e.g., food intake), the proposed fuzzy CMAC is able to capture the glucose-insulin dynamics of individuals under different dietary profiles. Preliminary simulations show that the blood glucose level is kept within the state of euglycemia. The design of the proposed system follows closely to what is available in real life and is suitable for animal and clinical pilot testing in the near future.

Published in:

IEEE Transactions on Neural Networks  (Volume:20 ,  Issue: 5 )