By Topic

A Novel Chaotic Neural Network With the Ability to Characterize Local Features and Its Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lin Zhao ; Coll. of Autom., Harbin Eng. Univ., Harbin ; Ming Sun ; JianHua Cheng ; YaoQun Xu

To provide an ability to characterize local features for the chaotic neural network (CNN), Gauss wavelet is used for the self-feedback of the CNN with the dilation parameter acting as the bifurcation parameter. The exponentially decaying dilation parameter and the chaotically varying translation parameter not only govern the wavelet self-feedback transform but also enable the CNN to generate complex dynamics behavior preventing the network from being trapped in the local minima. Analysis of the energy function of the CNN indicates that the local characterization ability of the proposed CNN is effectively provided by the wavelet self-feedback in the manner of inverse wavelet transform and that the proposed CNN can achieve asymptotical stability. The experimental results on traveling salesman problem (TSP) suggest that the proposed CNN has a higher average success rate for obtaining globally optimal or near-optimal solutions.

Published in:

IEEE Transactions on Neural Networks  (Volume:20 ,  Issue: 4 )