By Topic

MAPEL: Achieving global optimality for a non-convex wireless power control problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li Ping Qian ; Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Shatin ; Zhang, Y.J.A. ; Jianwei Huang

Achieving weighted throughput maximization (WTM) through power control has been a long standing open problem in interference-limited wireless networks. The complicated coupling between the mutual interferences of links gives rise to a non-convex optimization problem. Previous work has considered the WTM problem in the high signal to interference-and-noise ratio (SINR) regime, where the problem can be approximated and transformed into a convex optimization problem through proper change of variables. In the general SINR regime, however, the approximation and transformation approach does not work. This paper proposes an algorithm, MAPEL, which globally converges to a global optimal solution of the WTM problem in the general SINR regime. The MAPEL algorithm is designed based on three key observations of the WTM problem: (1) the objective function is monotonically increasing in SINR, (2) the objective function can be transformed into a product of exponentiated linear fraction functions, and (3) the feasible set of the equivalent transformed problem is always ldquonormalrdquo, although not necessarily convex. The MAPEL algorithm finds the desired optimal power control solution by constructing a series of polyblocks that approximate the feasible SINR region in an increasing precision. Furthermore, by tuning the approximation factor in MAPEL, we could engineer a desirable tradeoff between optimality and convergence time. MAPEL provides an important benchmark for performance evaluation of other heuristic algorithms targeting the same problem. With the help of MAPEL, we evaluate the performance of several existing algorithms through extensive simulations.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:8 ,  Issue: 3 )