By Topic

Joint network-wide opportunistic scheduling and power control in multi-cell networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jeong-woo Cho ; Centre for Quantifiable Quality of Service in Commun. Syst., Norwegian Univ. of Sci. & Technol., Trondheim ; Jeonghoon Mo ; Song Chong

We present a unified analytical framework that maximizes generalized utilities of a wireless network by network-wide opportunistic scheduling and power control. That is, base stations in the network jointly decide mobile stations to be served at the same time as the transmission powers of base stations are coordinated to mitigate the mutually interfering effect. Although the maximization at the first glance appears to be a mixed, twofold and nonlinear optimization requiring excessive computational complexity, we show that the maximization can be transformed into a pure binary optimization with much lower complexity. To be exact, it is proven that binary power control of base stations is necessary and sufficient for maximizing the network-wide utilities under a physical layer regime where the channel capacity is linear in the signal-to-interference-noise ratio. To further reduce the complexity of the problem, a distributed heuristic algorithm is proposed that performs much better than existing opportunistic algorithms. Through extensive simulations, it becomes clear that network-wide opportunistic scheduling and power control is most suitable for fairness-oriented networks and under loaded networks. We believe that our work will serve as a cornerstone for network-wide scheduling approaches from theoretical and practical standpoints.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:8 ,  Issue: 3 )