Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

BioXyce: an engineering platform for the study of cellular systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
May, E.E. ; Discrete Math. & Complex Syst. Dept., Sandia Nat. Labs., Albuquerque, NM ; Schiek, R.L.

Researchers use constructs from the field of electrical engineering for the modelling and analysis of biological systems, but few exploit parallels between electrical and biological circuits for simulation purposes. The authors discuss the development of BioXyce, a circuit-based biological simulation platform that uses Xycetrade, a large-scale electrical circuit simulator, as its simulation engine. BioXyce is capable of simulating whole-cell and multicellular systems. Simulation results for the central metabolism in Escherichia coli K12 and cellular differentiation in Drosophila sp. are presented.

Published in:

Systems Biology, IET  (Volume:3 ,  Issue: 2 )