By Topic

Localization and Trajectory Reconstruction in Surveillance Cameras with Nonoverlapping Views

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pflugfelder, R. ; Austrian Res. Centers- ARC, Vienna, Austria ; Bischof, H.

This paper proposes a method that localizes two surveillance cameras and simultaneously reconstructs object trajectories in 3D space. The method is an extension of the Direct Reference Plane method, which formulates the localization and the reconstruction as a system of linear equations that is globally solvable by Singular Value Decomposition. The method's assumptions are static synchronized cameras, smooth trajectories, known camera internal parameters, and the rotation between the cameras in a world coordinate system. The paper describes the method in the context of self-calibrating cameras, where the internal parameters and the rotation can be jointly obtained assuming a man-made scene with orthogonal structures. Experiments with synthetic and real--image data show that the method can recover the camera centers with an error less than half a meter even in the presence of a 4 meter gap between the fields of view.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 4 )