By Topic

An Integrated Planning and Adaptive Resource Management Architecture for Distributed Real-Time Embedded Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shankaran, N. ; Dept. of Electr. Eng. & Comput. Sci., Vanderbilt Univ., Nashville, TN, USA ; Kinnebrew, J.S. ; Koutsoukas, X.D. ; Chenyang Lu
more authors

Real-time and embedded systems have traditionally been designed for closed environments where operating conditions, input workloads, and resource availability are known a priori and are subject to little or no change at runtime. There is an increasing demand, however, for autonomous capabilities in open distributed real-time and embedded (DRE) systems that execute in environments where input workload and resource availability cannot be accurately characterized a priori. These systems can benefit from autonomic computing capabilities, such as self-(re)configuration and self-optimization, that enable autonomous adaptation under varying-even unpredictable-operational conditions. A challenging problem faced by researchers and developers in enabling autonomic computing capabilities to open DRE systems involves devising adaptive planning and resource management strategies that can meet mission objectives and end-to-end quality of service (QoS) requirements of applications. To address this challenge, this paper presents the integrated planning, allocation, and control (IPAC) framework, which provides decision-theoretic planning, dynamic resource allocation, and runtime system control to provide coordinated system adaptation and enable the autonomous operation of open DRE systems. This paper presents two contributions to research on autonomic computing for open DRE systems. First, we describe the design of IPAC and show how IPAC resolves the challenges associated with the autonomous operation of a representative open DRE system case study. Second, we empirically evaluate the planning and adaptive resource management capabilities of IPAC in the context of our case study. Our experimental results demonstrate that IPAC enables the autonomous operation of open DRE systems by performing adaptive planning and management of system resources.

Published in:

Computers, IEEE Transactions on  (Volume:58 ,  Issue: 11 )