By Topic

A Convex Optimization Approach for Depth Estimation Under Illumination Variation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Miled, W. ; Signal & Image Process. Dept., TELECOM ParisTech, Paris ; Pesquet, J. ; Parent, M.

Illumination changes cause serious problems in many computer vision applications. We present a new method for addressing robust depth estimation from a stereo pair under varying illumination conditions. First, a spatially varying multiplicative model is developed to account for brightness changes induced between left and right views. The depth estimation problem, based on this model, is then formulated as a constrained optimization problem in which an appropriate convex objective function is minimized under various convex constraints modelling prior knowledge and observed information. The resulting multiconstrained optimization problem is finally solved via a parallel block iterative algorithm which offers great flexibility in the incorporation of several constraints. Experimental results on both synthetic and real stereo pairs demonstrate the good performance of our method to efficiently recover depth and illumination variation fields, simultaneously.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 4 )