By Topic

Time-Resolved Investigations of Electronic Transport Dynamics in Quantum Cascade Lasers Based on Diagonal Lasing Transition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hyunyong Choi ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI ; Diehl, L. ; Zong-Kwei Wu ; Giovannini, Marcella
more authors

In this study, the nature of electronic transport in quantum cascade lasers (QCLs) has been extensively investigated using an ultrafast time-resolved, degenerate, pump-probe optical technique. Our investigations enable a comprehensive understanding of the gain recovery dynamics in terms of a coupling of the electronic transport to the oscillating intracavity laser intensity. In QCLs that have a lasing transition diagonal in real space, studies of the near-threshold reveal that the transport of electrons changes bias region from phonon-limited relaxation (tens of picoseconds) below threshold to photon-driven transport via stimulated emission (a few picoseconds) above threshold. The gain recovery dynamics in the photon-driven regime is compared with conventional four-level lasers such as atomic, molecular, and semiconductor interband lasers. The depopulation dynamics out of the lower lasing state is explained using a tight-binding tunneling model and phonon-limited relaxation. For the superlattice relaxation, it is possible to explain the characteristic picosecond transport via dielectric relaxation; Monte Carlo simulations with a simple resistor model are developed, and the Esaki-Tsu model is applied. Subpicosecond dynamics due to carrier heating in the upper subband are isolated and appear to be at most about 10% of the gain compression compared with the contribution of stimulated emission. Finally, the polarization anisotropy in the active waveguide is experimentally shown to be negligible on our pump-probe data, supporting our interpretation of data in terms of gain recovery and transport.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:45 ,  Issue: 4 )