By Topic

High-Linearity CMOS T/R Switch Design Above 20 GHz Using Asymmetrical Topology and AC-Floating Bias

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Piljae Park ; Dept. of Electr. & Comput. Eng., Univ. of California at Santa Barbara, Santa Barbara, CA ; Dong Hun Shin ; Yue, C.P.

This paper presents circuit techniques to achieve high linearity and good isolation for CMOS transmit/receive (T/R) switches above 20 GHz. A comparison between the conventional symmetrical and the proposed asymmetrical switch topology is presented with an emphasis on the linearity performance. The substrate loading effects on T/R switch figure of merit are analyzed quantitatively based on a compact model of triple-well (TW) NMOS device. AC-floating bias techniques used for the T/R switch and the associated performance tradeoffs are discussed. By combining these techniques, an LC-tuned 24-GHz single-pole double-throw T/R switch is implemented in a 90-nm TW CMOS process. The switch uses 1.2-V digital control signals for both T/R mode selection and source/drain biases. The design achieves a measured P1dB of 28.7 dBm, which represents the highest linearity reported to date for CMOS millimeter-wave switches. The measured insertion loss and return loss at 24 GHz are better than 3.5 and 10 dB, respectively.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:57 ,  Issue: 4 )