By Topic

Low-Power Clocked-Pseudo-NMOS Flip-Flop for Level Conversion in Dual Supply Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Peiyi Zhao ; Math & Comput. Sci. Dept., Chapman Univ., Orange, CA, USA ; Jason B. McNeely ; Pradeep K. Golconda ; Soujanya Venigalla
more authors

Clustered voltage scaling (CVS) is an effective way to decrease power dissipation. One of the design challenges is the design of an efficient level converter with fewer power and delay overheads. In this paper, level-shifting flip-flop topologies are investigated. Different level-shifting schemes are analyzed and classified into groups: differential style, n-type metal-oxide-semiconductor (NMOS) pass-transistor style, and precharged style. An efficient level-shifting scheme, the clocked-pseudo-NMOS (CPN) level conversion scheme, is presented. One novel level conversion flip-flop (CPN-LCFF) is proposed, which combines the conditional discharge technique and pseudo-NMOS technique. In view of power and delay, the new CPN-LCFF outperforms previous LCFF by over 8% and 15.6%, respectively.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:17 ,  Issue: 9 )