By Topic

A 32-Gb/s On-Chip Bus With Driver Pre-Emphasis Signaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Liang Zhang ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Wilson, J.M. ; Bashirullah, R. ; Lei Luo
more authors

This paper describes a differential current-mode bus architecture based on driver pre-emphasis for on-chip global interconnects that achieves high-data rates while reducing bus power dissipation and improving signal delay latency. The 16-b bus core fabricated in 0.25-mum complementary metal-oxide-semiconductor (CMOS) technology attains an aggregate signaling data rate of 32 Gb/s over 5-10-mm-long lossy interconnects. With a supply of 2.5 V, 25.5-48.7-mW power dissipation was measured for signal activity above 0.1, equivalent to 0.80-1.52 pJ/b. This work demonstrates a 15.0%-67.5% power reduction over a conventional single-ended voltage-mode static bus while reducing delay latency by 28.3% and peak current by 70%. The proposed bus architecture is robust against crosstalk noise and occupies comparable routing area to a reference static bus design.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:17 ,  Issue: 9 )