By Topic

Single-Electron Device With Si Nanodot Array and Multiple Input Gates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Kaizawa, T. ; Grad. Sch. of Inf. Sci. & Technol., Hokkaido Univ., Sapporo, Japan ; Arita, M. ; Fujiwara, Akira ; Yamazaki, K.
more authors

We have developed a flexible-logic-gate single-electron device (SED) with an array of nanodots. Although the small size of SEDs is highly advantageous, the size of the nanodots inevitably fluctuates, which causes variations in device characteristics. This variability can be eliminated and high device functionality can be obtained by exploiting the oscillatory characteristics and multigate capability of SEDs. We fabricated, on a silicon-on-insulator wafer, a Si nanodot array device with two input gates and a control gate and investigated its basic operation characteristics experimentally. The device was demonstrated to operate as a logic gate providing six important logic functions ( and, or, nand, nor, xor, and xnor), which are obtained by adjusting the control-gate voltage.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:8 ,  Issue: 4 )