Cart (Loading....) | Create Account
Close category search window
 

A Fast and Accurate Far-Field Pseudopolar Format Radar Imaging Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fortuny-Guasch, J. ; Eur. Comm. Joint Res. Centre, Inst. for the Protection & Security of Citizen, Ispra

A novel imaging algorithm to be used under the condition of having an image scene in the far field of a linear radar aperture is presented. This is an application scenario that is drastically different from those of spaceborne and airborne synthetic aperture radar (SAR) systems, which has not been properly addressed to date. The technique is particularly tailored for a stepped-frequency continuous wave (CW) or frequency-modulated CW radar. The radar aperture must be linear and can be formed either with a physical or synthetic array. With the suggested method, the radar reflectivity of the image scene is obtained through an interpolation-free series expansion, where only 2-D fast Fourier transforms of the frequency-domain backscatter data are required. The resulting image is sampled on a ldquopolarlikerdquo or pseudopolar grid, which is introduced to simplify the formulation. The main advantages of this method are its extremely low computational cost and the high accuracy of the resulting imagery. The technique is extensively validated both with numerical simulations and two ground-based SAR data sets. Last but not least, numerical simulations show that this technique can be used with an ultrawideband radar of 1 GHz of bandwidth.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 4 )

Date of Publication:

April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.