By Topic

Low-Power Memory-Reduced Traceback MAP Decoding for Double-Binary Convolutional Turbo Decoder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheng-Hung Lin ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei ; Chun-Yu Chen ; Tsung-Han Tsai ; An-Yeu Wu

Iterative decoding of convolutional turbo code (CTC) has a large memory power consumption. To reduce the power consumption of the state metrics cache (SMC), low-power memory-reduced traceback maximum a posteriori algorithm (MAP) decoding is proposed. Instead of storing all state metrics, the traceback MAP decoding reduces the size of the SMC by accessing difference metrics. The proposed traceback computation requires no complicated reversion checker, path selection, and reversion flag cache. For double-binary (DB) MAP decoding, radix-2times2 and radix-4 traceback structures are introduced to provide a tradeoff between power consumption and operating frequency. These two traceback structures achieve an around 20% power reduction of the SMC, and around 7% power reduction of the DB MAP decoders. In addition, a high-throughput 12-mode WiMAX CTC decoder applying the proposed radix-2times2 traceback structure is implemented by using a 0.13-mum CMOS process in a core area of 7.16 mm2. Based on postlayout simulation results, the proposed decoder achieves a maximum throughput rate of 115.4 Mbps and an energy efficiency of 0.43 nJ/bit per iteration.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:56 ,  Issue: 5 )