We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Adaptive Algorithms to Track the PARAFAC Decomposition of a Third-Order Tensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nion, D. ; Dept. of Electron. & Comput. Eng., Tech. Univ. of Crete, Chania ; Sidiropoulos, N.D.

The PARAFAC decomposition of a higher-order tensor is a powerful multilinear algebra tool that becomes more and more popular in a number of disciplines. Existing PARAFAC algorithms are computationally demanding and operate in batch mode - both serious drawbacks for on-line applications. When the data are serially acquired, or the underlying model changes with time, adaptive PARAFAC algorithms that can track the sought decomposition at low complexity would be highly desirable. This is a challenging task that has not been addressed in the literature, and the topic of this paper. Given an estimate of the PARAFAC decomposition of a tensor at instant t, we propose two adaptive algorithms to update the decomposition at instant t+1, the new tensor being obtained from the old one after appending a new slice in the 'time' dimension. The proposed algorithms can yield estimation performance that is very close to that obtained via repeated application of state-of-art batch algorithms, at orders of magnitude lower complexity. The effectiveness of the proposed algorithms is illustrated using a MIMO radar application (tracking of directions of arrival and directions of departure) as an example.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 6 )