By Topic

Cyclic delay diversity with frequency domain turbo equalization for uplink fast fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ui-Kun Kwon ; Dept. of Electron. & Electr. Eng., POSTECH, Pohang ; Gi-Hong Im

Cyclic delay diversity (CDD) is an attractive diversity technique due to its low complexity and compatibility to existing wireless communication systems. This letter proposes a CDD with frequency domain turbo equalization (FDTE) for single carrier (SC) transmission, in order to achieve the full spatial diversity of frequency-selective multi-antenna channels. The frequency diversity inherent in SC is picked up from the increased channel selectivity of CDD. The noise or intersymbol interference enhanced by equalization for highly selective channels is then mitigated through applying FDTE at the receiver. Simulation results show that the performance of proposed system approaches the corresponding orthogonal spacetime block coding (STBC) system in slowly fading channels without any data rate loss, and considerably outperforms the STBC system in fast fading channels.

Published in:

Communications Letters, IEEE  (Volume:13 ,  Issue: 3 )