Cart (Loading....) | Create Account
Close category search window
 

Dynamic inversion with zero-dynamics stabilisation for quadrotor control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Das, A. ; Autom. & Robot. Res. Inst., Univ. of Texas at Arlington, Fort Worth, TX ; Subbarao, K. ; Lewis, F.

For a quadrotor, one can identify the two well-known inherent rotorcraft characteristics: underactuation and strong coupling in pitch-yaw-roll. To confront these problems and design a station-keeping and tracking controller, dynamic inversion is used. Typical applications of dynamic inversion require the selection of the output control variables to render the internal dynamics stable. This means that in many cases, perfect tracking cannot be guaranteed for the actual desired outputs. Instead, the internal dynamics of the feedback linearised system is stabilised using a robust control term. Unlike standard dynamic inversion, the linear controller gains are chosen uniquely to satisfy the tracking performance. Stability and tracking performance are guaranteed using a Lyapunov-type proof. Simulation with a typical nonlinear quadrotor dynamic model is performed to show the effectiveness of the designed control law in the presence of input disturbances.

Published in:

Control Theory & Applications, IET  (Volume:3 ,  Issue: 3 )

Date of Publication:

March 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.