By Topic

Free-Form Simulation of Sequential Etching and Surface Characterization for 3-D MEMS Fabrication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
George, S.K. ; Dept. of Ind. & Syst. Eng., Univ. at Buffalo, Buffalo, NY ; Koc, B.

A new diffusion-based simulation model of isotropic wet etching and free-form surface characterization method for 3-D free-form microelectromechanical systems (MEMS) fabrication is presented in this paper. To simulate the etching process, a diffusion-based model solved by the finite-element method (FEM) has been developed, allowing extraction of more accurate etch-front data at discrete time steps. In the developed method, free-form MEMS objects are modeled as B-spline functions with material concentration. Finite elements are generated by discretization in the parametric domain of the free-form object and mapping back to the Euclidean space. Points on the etch front are extracted using a Z-map method. The extracted point data are characterized to obtain a B-spline representation of the etch-front surface. Examples from the isotropic etching simulation of 2-D and 3-D objects with both regular and free-form geometry are presented. The developed method allows the simulation of 3-D objects with free-form input and free-form mask opening and facilitates the simulation of sequential etching of free-form objects with irregular mask openings. This paper also discusses applications of the developed method in MEMS process planning that can be realized by taking advantage of the better control of geometry that it provides in MEMS fabrication.

Published in:

Microelectromechanical Systems, Journal of  (Volume:18 ,  Issue: 2 )