By Topic

A Compact Model for Undoped Silicon-Nanowire MOSFETs With Schottky-Barrier Source/Drain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Guojun Zhu ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Xing Zhou ; Teck Seng Lee ; Lay Kee Ang
more authors

A comprehensive physics-based compact model for three-terminal undoped Schottky-barrier (SB) gate-all-around silicon-nanowire MOSFETs is formulated based on a quasi-2-D surface-potential solution and the Miller-Good tunneling model. The energy-band model has accounted for the screening of the gate field by the electrons or holes, which has been largely missed in the literature. Although SB-MOSFETs are essentially ambipolar devices, we show that the separate modeling of electron and hole currents is simple yet accurately predicts the final ambipolar current. Thinner oxide thickness is confirmed to be beneficial to SB-MOSFETs for both ON - and OFF-state currents. However, smaller nanowire radius (or thinner body thickness) is found to be only beneficial to SB-MOSFETs with high SB heights (SBHs) despite the OFF-state current being reduced significantly. For SB-MOSFETs with low SBHs, the tunneling-current-density enhancement due to a smaller radius is not able to compensate the reduction in the contact size, which leads to a degradation of the ldquoONrdquo current. The drift current in the channel is shown to be negligible in SB-MOSFETs, and the tunneling/thermionic current through the SB represents the main current-limiting mechanism.

Published in:

Electron Devices, IEEE Transactions on  (Volume:56 ,  Issue: 5 )