By Topic

On the Pseudomorphic High Electron Mobility Transistors (PHEMTs) With a Low-Temperature Gate Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Li-Yang Chen ; Dept. of Electr. Eng., Nat. Cheng-Kung Univ., Tainan ; Huey-Ing Chen ; Cheng, Shiou-Ying ; Chen, Tzu-Pin
more authors

The characteristics of AlGaAs/InGaAs/GaAs depletion-mode (D-mode) and enhancement-mode (E-mode) pseudomorphic high electron mobility transistors (PHEMTs) fabricated using an electroless-plated (EP) deposition approach are investigated. Under the low-temperature and low-energy conditions, the EP deposition approach can form a better metal-semiconductor interface. For the studied devices, with a 1times100 mum2 gate dimension, excellent characteristics of the maximum drain saturation current (168.9 mA/mm) and extrinsic transconductance (225.8 mS/mm) are obtained for the D-mode device. The corresponding values for the E-mode device are 152.5 mA/mm and 211.7 mS/mm, respectively. Moreover, the EP approach also has the advantages of easy operation and low cost.

Published in:

Electron Device Letters, IEEE  (Volume:30 ,  Issue: 4 )