Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Esaliency (Extended Saliency): Meaningful Attention Using Stochastic Image Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Avraham, T. ; Comput. Sci. Dept., Technion - Israel Inst. of Technol., Haifa, Israel ; Lindenbaum, M.

Computer vision attention processes assign variable-hypothesized importance to different parts of the visual input and direct the allocation of computational resources. This nonuniform allocation might help accelerate the image analysis process. This paper proposes a new bottom-up attention mechanism. Rather than taking the traditional approach, which tries to model human attention, we propose a validated stochastic model to estimate the probability that an image part is of interest. We refer to this probability as saliency and thus specify saliency in a mathematically well-defined sense. The model quantifies several intuitive observations, such as the greater likelihood of correspondence between visually similar image regions and the likelihood that only a few of interesting objects will be present in the scene. The latter observation, which implies that such objects are (relaxed) global exceptions, replaces the traditional preference for local contrast. The algorithm starts with a rough preattentive segmentation and then uses a graphical model approximation to efficiently reveal which segments are more likely to be of interest. Experiments on natural scenes containing a variety of objects demonstrate the proposed method and show its advantages over previous approaches.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 4 )