By Topic

Sensorless Position Control Using Feedforward Internal Force for Completely Restrained Parallel-Wire-Driven Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hithoshi Kino ; Dept. of Intell. Mech. Eng., Fukuoka Inst. of Technol., Fukuoka ; Toshiaki Yahiro ; Shohei Taniguchi ; Kenji Tahara

Generally, point-to-point control for a completely restrained (CR) parallel-wire-driven system requires a balancing internal force to prevent slackening of wires, along with a feedback term based on some displacement sensor. This paper specifically describes CR systems' internal force properties, then presents the possibility of motion convergence at a desired position when the internal force balancing at a position is given as sensorless feedforward input. Subsequently, we use the property of internal force positively for sensorless position control. This positioning method is applicable for low-cost manipulation, which does not require high accuracy, and for emergency positioning of systems when sensors malfunction.

Published in:

IEEE Transactions on Robotics  (Volume:25 ,  Issue: 2 )