By Topic

An Object-Tracking Algorithm Based on Multiple-Model Particle Filtering With State Partitioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yan Zhai ; Schlumberger Technol. Corp., Sugar Land, TX ; Mark B. Yeary ; Samuel Cheng ; Nasser Kehtarnavaz

As evidenced by the recent works of many researchers, the particle-filtering (PF) framework has revolutionized probabilistic visual target tracking. In this paper, we present a new particle filter tracking algorithm that incorporates the multiple-model (MM) paradigm and the technique of state partitioning with parallel filters. Traditionally, most tracking algorithms assume that a target operates according to a single dynamic model. However, the single-model assumption can cause the tracker to become unstable, particularly when the target has complex motions and when the camera has abrupt ego-motions. In the new tracking algorithm, a target was assumed to operate according to one dynamic model from a finite set of models. The switching process from one model to another was governed by a jump Markov process. Based on the improved MM particle filter framework, we offer a new design strategy that adopts the state-partitioning technique and a bank of parallel extended Kalman filters to construct a better proposal distribution to achieve further estimation accuracy. We have conducted extensive testing for the proposed tracking algorithm, and key outcomes were given in the results section. It has been demonstrated by the experiments that this approach gave significantly improved estimations, enabling the new particle filter to effectively track human subjects.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:58 ,  Issue: 5 )