By Topic

Microsurface Reverse Engineering and Compensation for Laser Micromachining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohammad A. Mayyas ; Autom. & Robot. Res. Inst., Univ. of Texas at Arlington, Forth Worth, TX ; Panos S. Shiakolas

Microsurface scale characteristics (roughness, waviness and form) and the workpiece mounting fixture effects must be accounted and compensated for during laser micromachining such that the focused laser spot position is known in the coordinates of the measured surfaces. Thus, allowing rapid and accurate micromachining on the true workpiece engineering surface. The thin-plate splines (TPSs), a mathematically simple theory, is modified and employed in the reconstruction of 2 1/2 D unfolded continuous and differentiable microtopographical surfaces from a limited set of sampled digital elevation data. The TPS theory aids in restoring bad samples and in enhancing the visualization of the reconstructed surface and the characterization of microelectromechanical systems (MEMS) structures. The reverse engineered surface could also be interfaced and used with a CAD/CAM system to compensate for the focal spot location of a laser beam based on the actual reversed engineered workpiece surface. The practical examples of the real microsurfaces presented in this work, combine comprehensive identification with the ultimate goal of utilizing the algorithms in the compensation of the laser focused spot for a femtosecond laser micromachining (FLM) system currently under development in our laboratory.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:6 ,  Issue: 2 )