By Topic

Extremum Seeking With Stochastic Perturbations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chris Manzie ; Dept. of Mech. Eng., Univ. of Melbourne, Melbourne, VIC ; Miroslav Krstic

Extremum seeking (ES) using deterministic periodic perturbations has been an effective method for non-model based real time optimization when only limited plant knowledge is available. However, periodicity can naturally lead to predictability which is undesirable in some tracking applications and unrepresentative of biological optimization processes such as bacterial chemotaxis. With this in mind, it is useful to investigate employing stochastic perturbations in the context of a typical ES architecture, and to compare the approach with existing stochastic optimization techniques. In this work, we show that convergence towards the extremum of a static map can be guaranteed with a stochastic ES algorithm, and quantify the behavior of a system with Gaussian-distributed perturbations at the extremum in terms of the ES constants and map parameters. We then examine the closed loop system when actuator dynamics are included, as the separation of time scales between the perturbation signal and plant dynamics recommended in periodic ES schemes cannot be guaranteed with stochastic perturbations. Consequently, we investigate how actuator dynamics influence the allowable range of ES parameters and necessitate changes in the closed loop structure. Finally simulation results are presented to demonstrate convergence and to validate predicted behavior about the extremum. For the sake of analogy with the classical methods of stochastic approximation, stochastic ES in this technical note is pursued in discrete time.

Published in:

IEEE Transactions on Automatic Control  (Volume:54 ,  Issue: 3 )