By Topic

Non-Fragile Exponential Stability Assignment of Discrete-Time Linear Systems With Missing Data in Actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhan Shu ; Dept. of Mech. Eng., Univ. of Hong Kong, Hong Kong ; Lam, J. ; Junlin Xiong

This technical note is concerned with the non-fragile exponential stabilization for a class of discrete-time linear systems with missing data in actuators. The process of missing data is modeled by a discrete-time Markov chain with two state components. When no uncertainty exists in the controllers, a necessary and sufficient condition, which not only guarantees the exponential stability but also gives a lower bound on the decay rate, is established in terms of linear matrix inequalities (LMIs). Based on this condition, an LMI-based approach is provided to design a non-fragile state-feedback controller such that the closed-loop system is exponentially stable with a prescribed lower bound on the decay rate for the known missing data process and all admissible uncertainties in controllers. A numerical example is provided to show the effectiveness of the theoretical results.

Published in:

Automatic Control, IEEE Transactions on  (Volume:54 ,  Issue: 3 )