Cart (Loading....) | Create Account
Close category search window
 

A kernel based system for the estimation of non-stationary signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jemili, K. ; Dept. of Electr. Eng., Dayton Univ., OH, USA ; Westerkamp, John J.

A new signal estimation technique is introduced for highly non-stationary signals. The system uses the wavelet transform to extract time-frequency components of the signal plus noise, followed by a radial basis function neural network that adaptively estimates the underlying signal. The method is applied to the visual evoked potential (EP) signal, which is a transient signal corrupted by the ongoing electroencephalogram (EEG) noise, with a signal-to-noise ratio often less than -6 dB. The proposed system gives good time-varying estimates of the EP, while suppressing the on-going EEG

Published in:

Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on  (Volume:5 )

Date of Conference:

9-12 May 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.