By Topic

Design, study, modelling and control of a new single-phase high power factor rectifier based on the single-ended primary inductance converter and the Sheppard-Taylor topology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
H. Y. Kanaan ; Saint-Joseph University ; K. Al-Haddad ; A. Hayek ; I. Mougharbel

A new single-phase power factor corrector (PFC) based on the Sheppard-Taylor topology is studied. Compared with conventional PFCs, this topology facilitates a better input current tracking, lower voltage stresses across the devices and larger output voltage range for the same operating area. The converter is integrated as a PFC at the DC-end of a single-phase diode bridge. Pulse-width-modulated (PWM) multi-loops control schemes are proposed and developed in order to ensure a unity power factor at the AC-source side and a regulated voltage at the DC-load side. The first control method uses the simple and robust hysteretic-based controller; the second employs a conventional PI regulator; and the third is based on the model nonlinearity compensation approach. The design of the last two control methods is based on the knowledge of a mathematical model that would accurately represent the converter. This model is developed in this paper using the state-space averaging technique, and then the small-signal transfer functions of the converter are derived for linear control design purpose. The performance of the different control strategies is evaluated through simulation experiments carried out on a numerical version of the converter. The implemented model of the converter is obtained by using the switching function technique. The control system is tested under both rated and disturbed operating conditions. The system performance is evaluated in terms of source current total harmonic distortion (THD), input power factor, DC voltage stabilization, and regulation following load variations.

Published in:

IET Power Electronics  (Volume:2 ,  Issue: 2 )