By Topic

High immunity to threshold voltage variability in undoped ultra-thin FDSOI MOSFETs and its physical understanding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

19 Author(s)

Sources responsible for local and inter-die threshold voltage (Vt) variability in undoped ultra-thin FDSOI MOSFETs with a high-k/metal gate stack are experimentally discriminated for the first time. Charges in the gate dielectric and/or TiN gate workfunction fluctuations are determined as major contributors to the local Vt variability and it is found that SOI thickness (TSi) variations have a negligible impact down to TSi=7 nm. Moreover, TSi scaling is shown to limit both local and inter-die Vt variability induced by gate length fluctuations. The highest matching performance ever reported for 25 nm gate length MOSFETs is achieved (AVt=0.95 mV.mum), demonstrating the effectiveness of the undoped ultra-thin FDSOI architecture in terms of Vt variability control.

Published in:

Electron Devices Meeting, 2008. IEDM 2008. IEEE International

Date of Conference:

15-17 Dec. 2008