By Topic

A full-synthesizable high-precision built-in delay time measurement circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ming-Chien Tsai ; Dept. of Electron. Eng., Feng-Chia Univ. Taiwan, Taichung ; Ching-Hwa Cheng

Delay testing has become a major issue for manufacturing advanced Systems on a Chip. Automatic Test Equipment and scan techniques are usually applied in delay testing. However, the circuits under test have many circuit paths and dependent input patterns; it is hard to measure delay times accurately, especially when debugging small delay defects. We propose a Built-In Delay Measurement (BIDM) circuit that is modified from Vernier Delay Lines. All digitally designed BIDMs with small area overhead can be easily embedded within testing circuits. BIDMs can be used to record the data propagation delay times within circuit path segments, for delay testing, diagnosis, and calibration requirements internal to the chip. Our BIDM was implemented in a 32 bit error correction circuit by a chip using TSMC 0.18u technology. The instruments measured results showing that the BIDM chip correctly reported the CUT segment path delay times. The chip measurement results were a 95.83% match to the postlayout SPICE simulation values. This BIDM makes it possible to debug small delay defects in chips.

Published in:

Design Automation Conference, 2009. ASP-DAC 2009. Asia and South Pacific

Date of Conference:

19-22 Jan. 2009