By Topic

Simultaneous data transfer routing and scheduling for interconnect minimization in multicycle communication architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu-Ju Hong ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu ; Ya-Shih Huang ; Juinn-Dar Huang

In deep submicron technology, wire delay is no longer negligible and is gradually becoming a dominant factor of system performance. Several state-of-the-art architectural synthesis flows have already adopted the distributed register architecture to cope with the increasing wire delay by allowing multicycle communication. In this paper, we formulate channel and register allocation within a refined regular distributed register architecture, named RDR-GRS, as a problem of simultaneous data transfer routing and scheduling for minimizing global interconnect resources. We also present an innovative algorithm with both spatial and temporal considerations. It features both a concentration-oriented path router gathering wire-sharable data transfers and a channel-based time scheduler resolving contentions for wires in a channel, which are in spatial and temporal domain, respectively. The experimental results show that the proposed algorithm can significantly outperform existing related works.

Published in:

Design Automation Conference, 2009. ASP-DAC 2009. Asia and South Pacific

Date of Conference:

19-22 Jan. 2009