Cart (Loading....) | Create Account
Close category search window
 

Explicit Model Predictive Control of DC–DC Switched-Mode Power Supplies With Extended Kalman Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Beccuti, A.G. ; Autom. Control Lab., ETH Zurich, Zurich ; Mariethoz, S. ; Cliquennois, S. ; Shu Wang
more authors

This paper presents a sensorless explicit model predictive control scheme for the dc-dc boost converter. No direct inductor current measurement is needed as the coil current is derived either via a static approximation or, for improved accuracy, through an extended Kalman filter. The estimate is used in the chosen optimal control problem formulation which yields the optimal input by intrinsically accounting for duty cycle and current constraints. The optimization problem is explicitly presolved offline so that the online effort is reduced to a simple search in the resulting lookup table. No online optimization is required, greatly facilitating physical implementation and allowing for experimental validation on an integrated dc-dc converter through a fixed-point DSP.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 6 )

Date of Publication:

June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.