By Topic

Ant Colony Optimization Incorporated With Fuzzy Q-Learning for Reinforcement Fuzzy Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chia-Feng Juang ; Dept. of Electr. Eng., Nat. Chung-Hsing Univ., Taichung ; Chun-Ming Lu

This paper proposes the design of fuzzy controllers by ant colony optimization (ACO) incorporated with fuzzy-Q learning, called ACO-FQ, with reinforcements. For a fuzzy inference system, we partition the antecedent part a priori and then list all candidate consequent actions of the rules. In ACO-FQ, the tour of an ant is regarded as a combination of consequent actions selected from every rule. Searching for the best one among all combinations is partially based on pheromone trail. We assign to each candidate in the consequent part of the rule a corresponding Q-value. Update of the Q-value is based on fuzzy-Q learning. The best combination of consequent values of a fuzzy inference system is searched according to pheromone levels and Q-values. ACO-FQ is applied to three reinforcement fuzzy control problems: (1) water bath temperature control; (2) magnetic levitation control; and (3) truck backup control. Comparisons with other reinforcement fuzzy system design methods verify the performance of ACO-FQ.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:39 ,  Issue: 3 )