By Topic

A Data Mining Approach for Detecting Higher-Level Clones in Software

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hamid Abdul Basit ; Lahore University of Management Sciences, Lahore ; Stan Jarzabek

Code clones are similar program structures recurring in variant forms in software system(s). Several techniques have been proposed to detect similar code fragments in software, so-called simple clones. Identification and subsequent unification of simple clones is beneficial in software maintenance. Even further gains can be obtained by elevating the level of code clone analysis. We observed that recurring patterns of simple clones often indicate the presence of interesting higher-level similarities that we call structural clones. Structural clones show a bigger picture of similarity situation than simple clones alone. Being logical groups of simple clones, structural clones alleviate the problem of huge number of clones typically reported by simple clone detection tools, a problem that is often dealt with postdetection visualization techniques. Detection of structural clones can help in understanding the design of the system for better maintenance and in reengineering for reuse, among other uses. In this paper, we propose a technique to detect some useful types of structural clones. The novelty of our approach includes the formulation of the structural clone concept and the application of data mining techniques to detect these higher-level similarities. We describe a tool called clone miner that implements our proposed technique. We assess the usefulness and scalability of the proposed techniques via several case studies. We discuss various usage scenarios to demonstrate in what ways the knowledge of structural clones adds value to the analysis based on simple clones alone.

Published in:

IEEE Transactions on Software Engineering  (Volume:35 ,  Issue: 4 )