By Topic

Discovering Transitional Patterns and Their Significant Milestones in Transaction Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qian Wan ; Dept. of Comput. Sci. & Eng., York Univ., Toronto, ON, Canada ; Aijun An

A transaction database usually consists of a set of time-stamped transactions. Mining frequent patterns in transaction databases has been studied extensively in data mining research. However, most of the existing frequent pattern mining algorithms (such as Apriori and FP-growth) do not consider the time stamps associated with the transactions. In this paper, we extend the existing frequent pattern mining framework to take into account the time stamp of each transaction and discover patterns whose frequency dramatically changes over time. We define a new type of patterns, called transitional patterns, to capture the dynamic behavior of frequent patterns in a transaction database. Transitional patterns include both positive and negative transitional patterns. Their frequencies increase/decrease dramatically at some time points of a transaction database. We introduce the concept of significant milestones for a transitional pattern, which are time points at which the frequency of the pattern changes most significantly. Moreover, we develop an algorithm to mine from a transaction database the set of transitional patterns along with their significant milestones. Our experimental studies on real-world databases illustrate that mining positive and negative transitional patterns is highly promising as a practical and useful approach for discovering novel and interesting knowledge from large databases.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 12 )