By Topic

Tension control of a winding machine for rectangular coils

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peng Wen ; Fac. of Eng. & Surveying, Univ. of Southern Queensland, Toowoomba, QLD ; Stapleton, C. ; Yan Li

This paper introduces the design and testing of tension control prototype systems to minimise these tension variations, which includes a fluidic muscle powered take up arm, a fluidic muscle wire accumulator and felt pad. First the model and their limitations for existing tensioning systems are identified. Then, they are theoretically analysed in simulations. The simulation results show that the acceleration and deceleration of the wire due to the changing wire path length causes a cyclic tension fluctuation. An online tension sensor verified the predictions of the model. The key for a successful design is to remove tension variations. We propose to add a wire flattening machine which includes an accumulator and tensioning device, and replace the conventional pneumatic cylinder powering the accumulator with a fluidic muscle. The simulation shows that the new prototype system almost doubles the winding speed with a tolerable tension fluctuation.

Published in:

Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th International Conference on

Date of Conference:

17-20 Dec. 2008