By Topic

Maximum a posteriori probability estimation of seafloor microroughness parameters from backscatter spatial coherence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Premus, V. ; Dept. of Electr. Eng., Duke Univ., Durham, NC, USA ; Alexandrou, D.

A technique is presented for the estimation of a set of parameters associated with a geologically motivated model for seafloor microroughness due to Goff and Jordan (1988). The method seeks to connect the spatial covariance of the backscattered acoustic field with the correlation properties of the seafloor by constructing the a posteriori probability density function (pdf) of the parameters that define the seafloor microroughness wavenumber spectrum. The processor maximizes the joint a posteriori probability density of the model parameter set. Due to the complexity of the probability surface, the method of simulated annealing is used to search for the globally optimum solution vector

Published in:

Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on  (Volume:5 )

Date of Conference:

9-12 May 1995