Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Control of a nonholonomic mobile robot: backstepping kinematics into dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fierro, R. ; Autom. & Robotics Res. Inst., Texas Univ., Arlington, TX, USA ; Lewis, F.L.

A dynamical extension that makes possible the integration of a kinematic controller and a torque controller for nonholonomic mobile robots is presented. A combined kinematic/torque control law is developed using backstepping and asymptotic stability is guaranteed by Lyapunov theory. Moreover, this control algorithm can be applied to the three basic nonholonomic navigation problems: tracking a reference trajectory, path following and stabilization about a desired posture. A general structure for controlling a mobile robot results that can accommodate different control techniques ranging from a conventional computed-torque controller, when all dynamics are known, to adaptive controllers

Published in:

Decision and Control, 1995., Proceedings of the 34th IEEE Conference on  (Volume:4 )

Date of Conference:

13-15 Dec 1995