By Topic

Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
John N. Tsitsiklis ; Information Systems Laboratory, Stanford University, Stanford, CA 94305 ; Dimitri P. Bertsekas ; Michael Athans

We present a model for asynchronous distributed computation and then proceed to analyze the convergence of natural asynchronous distributed versions of a large class of deterministic and stochastic gradient-like algorithms. We show that such algorithms retain the desirable convergence properties of their centralized counterparts, provided that the time between consecutive communications between processors plus communication delays are not too large.

Published in:

American Control Conference, 1984

Date of Conference:

6-8 June 1984