Cart (Loading....) | Create Account
Close category search window
 

A Constant Bound on Throughput Improvement of Multicast Network Coding in Undirected Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zongpeng Li ; Dept. of Comput. Sci., Univ. of Calgary, Calgary, AB ; Baochun Li ; Lap Chi Lau

Recent research in network coding shows that, joint consideration of both coding and routing strategies may lead to higher information transmission rates than routing only. A fundamental question in the field of network coding is: how large can the throughput improvement due to network coding be? In this paper, we prove that in undirected networks, the ratio of achievable multicast throughput with network coding to that without network coding is bounded by a constant ratio of 2, i.e., network coding can at most double the throughput. This result holds for any undirected network topology, any link capacity configuration, any multicast group size, and any source information rate. This constant bound 2 represents the tightest bound that has been proved so far in general undirected settings, and is to be contrasted with the unbounded potential of network coding in improving multicast throughput in directed networks.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 3 )

Date of Publication:

March 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.